منابع مشابه
Radial Breathing Mode Frequency of Multi-Walled Carbon Nanotube Via Multiple-Elastic Thin Shell Theory
In this paper, the radial breathing mode (RBM) frequencies of multi-walled carbon nanotubes (MWCNTs) are obtained based on the multiple-elastic thin shell model. For this purpose, MWCNT is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der Waals (vdW) forces between two adjacent tubes. Lennard-Jones potential is used to calculate the vdW ...
متن کاملradial breathing mode frequency of multi-walled carbon nanotube via multiple-elastic thin shell theory
in this paper, the radial breathing mode (rbm) frequencies of multi-walled carbon nanotubes (mwcnts) are obtained based on the multiple-elastic thin shell model. for this purpose, mwcnt is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der waals (vdw) forces between two adjacent tubes. lennard-jones potential is used to calculate the vdw forc...
متن کاملCell membrane wrapping of a spherical thin elastic shell.
Nanocapsules that can be tailored intelligently and specifically have drawn considerable attention in the fields of drug delivery and bioimaging. Here we conduct a theoretical study on cell uptake of a spherical nanocapsule which is modeled as a linear elastic solid thin shell in three dimensions. It is found that there exist five wrapping phases based on the stability of three wrapping states:...
متن کاملAcoustic Scattering Fromacoated Elastic Shell: Exact vs. Approximate Theory
The interaction of acoustic waves with fluid-loaded shell structures is an ongoing area of interest in underwater acoustics, ship construction and detection. The elasticity of the structure permits strong surfaceborne wave effects, which can be significant or dominant in large structures (many wavelengths in size). The significance of surface borne waves is compounded by low loss factors, enabl...
متن کاملModelling apical constriction in epithelia using elastic shell theory.
Apical constriction is one of the fundamental mechanisms by which embryonic tissue is deformed, giving rise to the shape and form of the fully-developed organism. The mechanism involves a contraction of fibres embedded in the apical side of epithelial tissues, leading to an invagination or folding of the cell sheet. In this article the phenomenon is modelled mechanically by describing the epith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Keldysh Institute Preprints
سال: 2016
ISSN: 2071-2898,2071-2901
DOI: 10.20948/prepr-2016-33